

REVIEW OF DIGITAL COMMUNICATIONS

Notes prepared for EE 6310

by

Professor Cyrus D. Cantrell

August-December 2003

ANALOG vs. DIGITAL COMMUNICATION

- Analog communication uses continuous-time signals that:
 - ⊳ Can (in principle) take any real value
 - > When received, produce an output that also varies continuously
 - ▶ Degrade gradually in the presence of physical effects such as attenuation, dispersion, low bandwidth, or noise
 - A high point of analog communication technology: The superheterodyne receiver
- **Digital communication** uses continuous-time signals that:
 - ▶ Represent bits or bit groups using a finite, standard alphabet
 - Continuous-time inputs are sampled, giving discrete-time series that are digitized and encoded before being transmitted
 - > When received, produce an output that is interpreted as bits or bit groups
 - ▶ Can be "cleaned up" from some distortion and noise, but generally do not degrade gracefully below a minimum signal-to-noise ratio
- In simple words, digital is profoundly different from analog

ERIK JONSSON SCHOOL PHOTEC

A DIGITAL COMMUNICATION LINK

- The link includes both analog and digital parts
 - ▶ For a digital link, the analog part is the transmitter, channel and receiver
 - ▶ For a linear, time-shift-invariant link, the transfer function defines the bandwidth, total attenuation and dispersion from transmitter input to receiver output

WHY DIGITAL COMMUNICATIONS?

- Digital encoding and decoding uses a finite **alphabet** of standard waveforms to represent bits or bit groups
- Digital techniques greatly reduce the effects of noise and distortion, and make it possible to approach theoretical information-capacity limits
 - > Attenuation reduces the signal amplitude, but does not reduce the noise inserted by the channel in the same frequency band that the signal uses
 - ▶ Dispersion changes the waveform's shape in the course of propagation
- An analog system designer has very few means to disentangle the signal from the noise or the distortion
 - ▶ Remember long-distance calls carried on analog channels?
- Digital communication changes the paradigm from waveform replication to waveform recognition
 - ▶ Distortion and noise don't matter, as long as each digital waveform can be recognized and distinguished from a small set of other waveforms

ADVANTAGES OF DIGITAL COMMUNICATIONS

- Fewer errors than analog transmission
- Higher efficency
- Higher maximum transmission rates
- A digital bitstream is easier to encrypt than an analog stream ⇒ better security
- Integrating voice, video and data is simpler with digital transmission than with analog transmission

LOGICAL vs. PHYSICAL LINKS

- Physical channels can be baseband or broadband
 - ▶ A broadband channel can share the medium with other physical channels
- Each physical channel supports one or more logical links
 - ▶ If several logical links originate at one host, one speaks of **multiplexing** the logical links onto the physical link
 - ▶ If several logical links originate from different hosts, one speaks of **multiple access** to the physical link
- Multiplexing and switching technologies drive the architecture of the network Example:
 - ▶ Multiple wavelengths in a single fiber (with one logical channel per wavelength) permits optical amplification and switched all-optical datapaths
 - ➤ One wavelength per fiber (with time-division-multiplexed logical channels) requires opto-electronic conversion at every node

PHYSICAL CHANNELS

- Types of physical channels that support data communication:
 - ▶ Point-to-point: A channel between exactly two hosts (or one host and one peripheral device)
 - Examples:
 - ♦ Cable connection from PC serial port to printer
 - ♦ Crossover cable Ethernet connection between two PCs
 - ♦ Telephone call set up between a home PC and an ISP's server
 - ▶ Multipoint: A channel shared by more than two hosts or peripherals
 - Examples:
 - ♦ An external SCSI bus
 - ♦ An external USB or Firewire bus
 - ♦ An Ethernet
 - ♦ A wireless LAN

POINT-TO-POINT LINKS

- A **point-to-point link** uses a physical channel between two only 2 host computers over which information can be transmitted
 - ▶ Channels are transmission lines or waveguides
 - Linear, time-shift-invariant systems (for most purposes)
 - ▶ Main physical properties for purposes of communication:
 - Bandwidth
 - Maximum transmission distance
 - ▶ Electrical/electromagnetic properties that determine data bandwidth and maximum transmission distance:
 - o Delay
 - Transmission-line effects
 - Attenuation
 - Crosstalk and noise

PROPERTIES OF COMMUNICATION CHANNELS (1)

• Delay

▶ Propagation time:

(propagation time across a channel of length L) = $\frac{L}{v_g}$

- $\circ v_g$ is the **group velocity**, i.e., the velocity of a pulse
- $\circ v_g$ is usually almost equal to the **phase velocity**, i.e., the velocity of a theoretical monochromatic wave of infinite duration

> Transmission time

(transmission time for N bits into a channel of bandwidth Δf) = $\frac{N}{\Delta f}$

▶ Total delay

total delay = transmission time + propagation time + buffering time + processing time

PROPERTIES OF COMMUNICATION CHANNELS (2)

- Transmission-line effects

$$Z_0 = \sqrt{\frac{L}{C}}$$

- \circ If the line is terminated with an impedance Z_L that is not equal to Z_0 , then energy is reflected back towards the transmitter
- Improperly terminated lines may be unusable for communications
- ▶ Reflection coefficient:

$$\rho = \frac{Z_L - Z_0}{Z_L + Z_0}$$

• Reflections can be analyzed in the time domain by using a bounce diagram

Visualization of a pulse on a transmission line using a bounce diagram

PROPERTIES OF COMMUNICATION CHANNELS (3)

• Attenuation

 $\frac{\text{Power received at a distance } L \text{ from the transmitter}}{\text{Power transmitted}} = e^{-\alpha L}$

- $\triangleright \alpha$ is the **attenuation coefficient** (units are cm⁻¹ or m⁻¹)
- \triangleright Loss in dB = $10(\log_{10} e)\alpha L \approx 4.343 \alpha L$
- ▶ Practical units of the attenuation coefficient are dB/km or dB/m
- \triangleright In metallic transmission lines, α depends on the frequency f, mainly because of the skin effect
 - o Skin depth $\delta(f) = 1/\sqrt{\pi f \mu \sigma}$
 - \circ For a coaxial transmission line with inner radius r_i and outer radius r_o ,

$$\alpha(f) \approx \frac{R_s(f)}{2\eta \ln(r_o/r_i)} \left(\frac{1}{r_o} + \frac{1}{r_i}\right) \quad \text{m}^{-1}$$

where the surface resistance is

$$R_s(f) = \sqrt{\frac{\pi f \mu}{\sigma}}$$
 ohms

ATTENUATION IN COAXIAL CABLE

ullet The dashed line shows a constant times \sqrt{f}

BANDWIDTH DEPENDS ON TRANSMISSION DISTANCE

• The red curve indicates a constant value of attenuation in copper cable

PROPERTIES OF COMMUNICATION CHANNELS (4)

• Crosstalk

- ▷ Crosstalk = unwanted waveforms induced in a channel by waveforms in adjacent channels
- ➤ Crosstalk cannot be cancelled easily, because a crosstalk waveform is not related to the transmitted waveform in the target channel
- Origin in electrical transmission lines: (Mostly) capacitive coupling
 Inductive or radiative coupling may occur at high frequencies
- ➤ Crosstalk between WDM channels in fiber is due to cross-phase modulation or 4-wave mixing

Noise

- ▶ Information is carried by a pulse train or an analog waveform
- ▶ **Bit error rate** = probability that a waveform that was transmitted as a 1 bit will be detected as representing a 0 bit (or vice versa)

BANDWIDTH USAGE OF COMMUNICATION LINKS (1)

Baseband

- ▶ Information is carried by a pulse train or an analog waveform
- ▶ Digital baseband is bit-serial or bit-group-serial
- ▷ Optimal when

spectral width of channel \approx spectral width of link

▶ Examples:

- RS-232, RS-422 over multiconductor cable
- Ethernet over 2- or 4-twisted pair cable or multimode optical fiber
- DS-1 transmission of multiplexed, digitized voice circuits over repeatered twisted-pair cable
- Long-haul, OC-12c or OC-48c data transmission over repeatered single-mode optical fiber

ERIK JONSSON SCHOOL PHOTEC

BASEBAND SPECTRUM

BANDWIDTH USAGE OF COMMUNICATION LINKS (2)

- Broadband (analog), passband (digital)
 - ▶ Multiple channels share the bandwidth of the link
 - ▶ Useful when

spectral width of one channel \ll spectral width of link

▶ Examples:

- o Long-haul, OC-12c or OC-48c data transmission over repeatered single-mode optical fiber
 - ♦ A digital waveform is used to modulate an optical-frequency carrier
- Wavelength division multiplexing (WDM) (≡ optical FDMA)
 - ♦ Each channel has its own wavelength and bandwidth
- Time division multiple access (TDMA)
 - ♦ Each channel is broadened to use the bandwidth of the link
 - ♦ Sharing of the channel occurs in signal space, not frequency space

PASSBAND SPECTRUM (ONE CHANNEL)

• A real signal that is generated by modulating a carrier is a linear combination of positive and negative frequencies:

$$v(t) = |v_0(t)| \cos(\omega t + \phi(t)) = v_0(t)e^{j\omega t} + v_0(t)^*e^{-j\omega t}$$

 $\triangleright v_0(t)$ is the complex envelope of the wave

- \circ Only $|v_0(t)|$ varies \Rightarrow amplitude modulation
- \circ Only $\phi(t)$ varies \Rightarrow phase (or frequency) modulation

PASSBAND SPECTRUM (TWO CHANNELS)

• Two modulated cosine signals:

$$v(t) = |v_1(t)| \cos (\omega_1 t + \phi_1(t)) + |v_2(t)| \cos (\omega_2 t + \phi_2(t))$$

EXAMPLES OF BROADBAND TECHNOLOGIES

- Frequency division multiple access (FDMA) (RF)
 - ▶ Each channel has its own carrier frequency and bandwidth
 - ▶ Example 1: Broadcast cable TV network
 - Each broadcast channel has its own carrier frequency Bandwidth is 6 MHz/channel
 - Example 2: Data/broadcast cable network
 - Each downlink data or broadcast channel has its own carrier frequency in the range from 65 to 750 MHz; bandwidth is 6 MHz/channel
 - Each uplink data channel has a 768 kHz band in the range 5–42 MHz
- Wavelength division multiplexing (WDM) (≡ optical FDMA)
 - ▶ Each channel has its own wavelength and bandwidth
- Time division multiple access (TDMA)
 - ▶ Each channel is broadened to use the bandwidth of the link
 - ▶ Sharing of the channel occurs in signal space, not frequency space

Concept of Frequency Division Multiplexing

Wavelength Division Multiplexing (WDM)

spectra at various propagation distances in the fiber

ERIK JONSSON SCHOOL PHOTEC

A SINGLE-DUPLEX DIGITAL COMMUNICATION LINK

PHYSICAL EFFECTS ON DIGITAL WAVEFORMS

WAVEFORMS THAT REPRESENT THE BIT STREAM 101010... AT THE BEGINNING AND END OF A SHORT CHANNEL

OPTICAL COMMUNICATION SYSTEM

SYNCHRONIZATION IN DIGITAL COMMUNICATIONS

- The receiver needs to be able to identify each digital waveform that arrives, even in the presence of noise and distortion
 - ▶ If high voltage signals a "1" and low voltage signals a "0", then one can identify the 1's and 0's by sampling at discrete times
 - ▶ If the sampling interval or phase are not correct, it is not possible to identify the received waveforms correctly
 - This leads to a **clock synchronization problem** \Rightarrow framing

ERIK JONSSON SCHOOL PHOTEC

A FULL-DUPLEX DIGITAL COMMUNICATION LINK

Optical Communication Protocol Stack

DIGITAL FORMATTING

- Comprises the following functions:
 - ▶ In the application layer:
 - Source coding
 - ♦ Compression of digital data
 - ♦ Quantization of analog data
 - Encryption
 - ▶ In the socket, network and datalink layers:
 - Encapsulation and framing (socket, network and datalink layers)
 - Channel coding (datalink layer)
 - \diamond Mapping of bit groups to codewords (e.g., using a block code)

BLOCK CODES AND THEIR APPLICATIONS TO ETHERNET

- \bullet A block code takes groups of n bits each and maps them to **codewords**
 - \triangleright Each codeword consists of N digits (symbols) in base β , where $\beta^N > 2^n$
 - \triangleright A block code is denoted as nBNX, where X stands for β
 - \triangleright Bases used in Ethernet are $\beta = 2$ (B), $\beta = 3$ (T) and $\beta = 5$ (Q)
- Goals for block codes in general:
 - > Error detection and forward error correction
 - ▶ Reduction of symbol transition rate (baud rate) below bit rate
 - > Provision of non-data codewords to encode control information
- Block codes used in Ethernet:
 - ▶ 4B/5B (100BASE-TX, 100BASE-FX)
 - $\triangleright 8B/6T (100BASE-T4)$
 - \triangleright 4B2Q (100BASE-T2)
 - ▷ 8B/10B (1000BASE-CX, 1000BASE-LX, 1000BASE-SX)
 - $\triangleright 8B/4Q (1000BASE-T)$

MODULATION

- Comprises 2 functions:
 - \triangleright Conversion from base- β codewords to code vectors, such as
 - Serialization of 10-bit codewords into code vectors of 1 bit each
 - Serialization of 6T codewords into code vectors of 3 T symbols each
 - ▶ Line coding
 - \circ Mapping of base- β symbols to analog signals

ELECTRICAL LINE CODES USED IN ETHERNET

- A line code maps logic levels (symbols) in code space to waveforms
- Goals:
 - ▶ Spectral utilization and shaping
 - Transmission of signals on media with limited bandwidth
 - Reduction of RF radiation
 - > Provision of enough transitions for clock recovery
 - ▶ Preservation of DC balance
- Line codes used in Ethernet:
 - ▶ Manchester (10BASE5, 10BASE2, 10BASE-T)
 - \triangleright NRZ (10BASE-F, 1000BASE-SX, 1000BASE-LX)
 - \triangleright NRZI (100BASE-FX)
 - \triangleright MLT-3 (100BASE-TX)
 - $\triangleright PAM5 \times 5 (100BASE-T2)$
 - \triangleright 4D-PAM5 (1000BASE-T)

ERIK JONSSON SCHOOL PHOTEC

OPTICAL LINE CODES

- Goals:
 - ▶ Spectral utilization and shaping
 - Transmission of signals with minimal bandwidth in order to minimize the effects of dispersion
 - > Provision of enough transitions for clock recovery
- Common optical line codes:
 - ⊳ NRZ
 - $\triangleright RZ$
 - $\triangleright CRZ$

EYE PATTERNS (1)

- An **eye pattern** is obtained by superimposing the actual waveforms for large numbers of transmitted or received symbols
 - ▶ Perfect eye pattern for noise-free, bandwidth-limited transmission of an alphabet of two digital waveforms encoding a binary signal (1's and 0's):

> Actual eye patterns are used to estimate the bit error rate and the signalto-noise ratio

EYE-PATTERN FORMATION

EYE MASK

• The signal must not intrude into the shaded areas

EYE PATTERNS (2)

• Observed eye patterns for fiberoptic transmission of a binary (two-level) NRZ signal at 1.55 μ m and 2.5 Gb/s. Horizontal scale: 200 ps/division. Top: L=0 km; bottom: L=120 km.¹ Observed partial eye closing is due to self-phase modulation and group-velocity dispersion.

EYE PATTERNS (3)

• Eye pattern for 5-level PAM (PAM-5), as used to operate gigabit Ethernet over 4 unshielded twisted pairs:

MEASUREMENT OF EYE PATTERNS (1)

• The pattern generator produces a pseudorandom bit stream

MEASUREMENT OF EYE PATTERNS (2)

• Anritsu MP1763B 12.5 Gb/s pulse pattern generator

MEASUREMENT OF EYE PATTERNS (3)

• Sequential sampling is used when the data rate exceeds a feasible sampling rate

MEASUREMENT OF EYE PATTERNS (4)

• Histograms in a digital oscilloscope

DIGITAL OSCILLOSCOPE ARCHITECTURE

TEKTRONIX DIGITAL PHOSPHOR OSCILLOSCOPE

SOURCE CODING

• Code length:

- \triangleright Let X be a discrete, memoryless source
 - \circ Alphabet is $\{x_1, \ldots, x_m\}$; (probability of symbol x_i) = p_i
 - Average information content per symbol:

$$H(X) = -\sum_{i=1}^{m} p_i \log_2 p_i$$
 bits

- Beware! The bits used to represent numerical data are logically distinct from the bits used to represent information content
- \triangleright Assign each symbol x_i a unique binary codeword of length n_i bits
 - Average codeword length: $L = \sum_{i=1}^{m} p_i n_i$ bits

• Source coding theorem:

- \triangleright Greatest lower bound on the average codeword length: $L \ge H(X)$
- $\triangleright L$ can be made arbitrarily close to H(X) by choice of codewords

CHANNEL CAPACITY

- Discrete, noise-free channel:
 - \triangleright Alphabet is $\{x_1, \ldots, x_m\}$
 - \circ Assume that (probability of symbol x_i) = 1/m (\Rightarrow maximum entropy)
 - Maximum channel capacity:

$$C = \frac{1}{T} \log_2 m$$
 bits/second

- $\circ T$ = time to transmit one symbol (assumed to be the same for all)
- Hartley-Shannon theorem for a noisy channel:
 - ⊳ Assume white, band-limited, Gaussian noise
 - ▶ Maximum channel capacity:

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$
 bits/second

 $\triangleright B = \text{channel bandwidth}, S = \text{signal power}, N = \text{noise power}$

BIT ERROR RATE (1)

- The **bit error rate** or **bit error ratio** is the probability of detecting a bit incorrectly in signaling single bits
 - ▶ An experimental estimate of the probability of error is the ratio

$$BER(T) = \frac{E(T)}{N(T)}$$

where E(T) is the number of errored bits in the **gating period** T, and N(T) is the total number of bits

▶ Basic bit-error-rate test (BERT) arrangement:

BIT ERROR RATE (2)

• Setup for laboratory measurement of the bit error rate:

BIT ERROR RATE (3)

• The **bit error rate** is the probability of detecting a bit incorrectly in signaling single bits:

BER =
$$p(1)P(0|1) + p(0)P(1|0)$$

BIT ERROR RATE (4)

• Conditional probability:

$$P(0|1) = \frac{1}{\sigma_1 \sqrt{2\pi}} \int_{-\infty}^{I_D} \exp\left(-\frac{(I_1 - I)^2}{2\sigma_1^2}\right) dI = \frac{1}{2} \operatorname{erfc}\left(-\frac{I_1 - I_D}{\sigma_1 \sqrt{2}}\right)$$

$$\operatorname{erfc}(x) = \operatorname{complementary error function} = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-u^2} du$$

▶ Minimum BER occurs when the decision threshold is chosen such that

$$\frac{I_1 - I_D}{\sigma_1} = \frac{I_D - I_0}{\sigma_0}$$

▶ Define

$$Q = \frac{I_1 - I_0}{\sigma_1 + \sigma_0}$$

 \triangleright At the optimum setting of I_D ,

BER =
$$\frac{1}{2}$$
erfc $\left(\frac{Q}{\sqrt{2}}\right) \approx \frac{e^{-Q^2/2}}{Q\sqrt{2\pi}}$

DIGITAL TRANSMISSION OF ANALOG SIGNALS

- Example: North American PSTN
- The analog time-varying voltage produced by sound waves impinging on a microphone travels over a twisted pair of copper wires to an end office
 - \triangleright The time-varying voltage is sampled at intervals of 125 μ s (8000 s⁻¹)
 - The result is a **pulse amplitude modulation** signal
 - Original baseband signal can be reconstructed from PAM sequence
 - Could transmit the PAM sequence on trunk lines, but then we'd have distortion and noise again...
 - ▶ The PAM signal is quantized and encoded digitally using 8 bits/sample
 - The result is a **pulse code modulation** signal
 - Quantization noise is an unavoidable side effect of digitization
- The octets from 24 different logical channels are inserted into a DS-1 frame and transmitted over a trunk line at a rate of 8000 frames/second

Datapath for a telephone call via the PSTN (U.S.)

PULSE AMPLITUDE MODULATION (PAM)

ANALOG TO DIGITAL CONVERSION

PULSE CODE MODULATION (PCM) CODING

MU-LAW ENCODING

- Purpose: Map the (theoretically infinite) range of sound volumes onto a finite interval, after sampling the signal
 - ▶ Rationale: There are more low-amplitude than high-amplitude sounds in speech
 - > There should be more quantization levels at low amplitudes than at high amplitudes
 - ▶ Quantization noise is an unavoidable side effect of digitization
- Mu-law equation:

$$v(f) = V \operatorname{sgn}(f) \frac{\ln\left[1 + \frac{\mu|f|}{V}\right]}{\ln(1 + \mu)}$$

 \triangleright In North America, $\mu = 255$

Time Division Multiplexing (TDM): DS-1 frame (1.544 Mb/s)

TDMA TECHNOLOGIES (1)

- Switching can be accomplished by interchanging time slots (time-division switching)
- Bit multiplexing
 - ▶ Each time slot contains 1 bit from each channel for that time slot
 - ▶ Requires synchronization
 - ⊳ Switch fabric must be reconfigurable in 1 bit time
- Block multiplexing
 - ▶ Each time slot contains the block transmitted by one channel in one frame time
 - ▶ Requires synchronization
 - ⊳ Switch fabric must be reconfigurable between frames

TDM SIGNAL HIERARCHY (NORTH AMERICA, JAPAN, KOREA)

Designation	Channels	Data Rate	Comments
		(Mb/s)	
DS-0	1	0.064	$8 \text{ kHz} \times 8 \text{ bits}$
			PCM voice channel
DS-1	24	1.544	T-1
			1 timing bit/frame
DS-1c	48	3.152	T-1c
DS-2	96	6.312	T-2
DS-3	672	44.736	T-3
DS-4	4032	274.176	T-4

TDM SIGNAL HIERARCHY (EUROPE — ITU)

Designation	Channels	Data Rate
		(Mb/s)
E1	30	2.048
E2	120	8.448
E3	480	34.368
E4	1920	139.264
E5	7680	565.148

SONET/SDH SIGNAL HIERARCHY

SONET	ITU-T	Data Rate	Payload Rate
Designation	Designation	(Mb/s)	(Mb/s)
STS-1/OC-1		51.84	50.112
STS-3/OC-3	STM-1	155.52	150.336
STS-9/OC-9	STM-3	466.56	451.008
STS-12/OC-12	STM-4	622.08	601.344
STS-18/OC-18	STM-6	933.12	902.016
STS-24/OC-24	STM-8	1244.16	1202.688
STS-36/OC-36	STM-12	1866.24	1804.032
STS-48/OC-48	STM-16	2488.32	2405.376
STS-192/OC-192	STM-64	9953.28	9621.504

TDMA TECHNOLOGIES (2)

- Code division multiple access (CDMA)
 - ▶ Each channel transmits bits using a unique code
 - The code is a sequence of short pulses (chips)
 - Must be orthogonal to the codes of all other channels
 - > Extensively used in wireless communications
- Packet switching
 - ▶ Bit rate for each channel is set at the link's maximum value
 - ▶ Each channel transmits when the link becomes available
 - ▶ Each channel transmits information in "chunks", or **packets**
 - ▶ Addressing information is carried in a **header** in each packet
 - ➤ Switch fabric (if used) must be reconfigurable in the time of a minimumlength packet
 - ➤ Contrast a bandwidth-limited link with a transmission-time-limited link (see next slide)

A transmission-time-limited link

A propagation-delay-limited link

delivery time = transmission time + propagation delay transmission time = packet size/bandwidth propagation delay = distance/group velocity

HOW PROPERTIES OF PHYSICAL LINKS AFFECT NETWORK ARCHITECTURE (1)

- Important properties of physical links include:
 - ▶ How adequate bandwidth is achieved
 - ⊳ Delay
 - ▶ Bit error rate
 - ▶ Need for synchronization
 - ▶ Whether physical channels are optical or electrical
 - ▶ Power budget

HOW PROPERTIES OF PHYSICAL LINKS AFFECT NETWORK ARCHITECTURE (2)

- How is **adequate bandwidth** achieved?
 - ▶ Bit-parallel transmission (as in a bus) is usually not an option
 - o Bus skew
 - ♦ Because pulses traveling on different wires in a multiwire cable experience slightly different electromagnetic environments, the pulses on different wires don't all arrive at the same time
 - ♦ Makes long-distance, bit-parallel communications very difficult
 - ▶ Usable bandwidth depends on distance
 - Copper cable: Attenuation depends on transmission distance (skin effect)
 - Optical fiber: Excessive values of (group velocity dispersion) × distance
 - × (bandwidth of pulse in wavelength) lead to intersymbol interference
 - ➤ The usual solution for limited bandwidth is multiple channels (synchronized: TDM; non-synchronized: FDM, WDM)

HOW PROPERTIES OF PHYSICAL LINKS AFFECT NETWORK ARCHITECTURE (3)

• Delay

- ▶ Subject to an upper bound for real-time applications (especially voice)
- \triangleright Electromagnetic propagation delay = distance/ v_g
 - For optical fiber, $v_g \approx \frac{2}{3}c = 2 \times 10^8 \text{ m/s}$
 - \diamond 200 meters: propagation delay \approx 1 μs (LANs)
 - \diamond 200 kilometers: propagation delay \approx 1 ms (MANs, small WANs)
 - \diamond 20,000 kilometers: propagation delay \approx 0.1 s (planetary WAN)
- \triangleright Buffer delay = (no. of bits buffered)/(bit rate)
- ▶ Routing, switching or regeneration delay
- ⊳ Software or firmware delay (codecs, etc.)
- ▶ Measurements of delay:
 - Propagation delay: Time-domain reflectometry
 - o Total delay: Software (e.g., ping, traceroute)

HOW PROPERTIES OF PHYSICAL LINKS AFFECT NETWORK ARCHITECTURE (4)

- Bandwidth-delay product (BWD) and bit error rate
 - ▷ BWD = volume of the pipe that represents a physical channel
 - BWD = no. of bits or bytes "in flight"
 - ♦ "In flight" means sent, but not yet received or acknowledged
 - \Rightarrow BWD should be $\ll 1/BER$ (otherwise, too many retransmissions)
 - \Rightarrow Fiberoptic transmission: 10 Gb/s \times 1 s = $10^{10} \ll 10^{12} = 1/BER$
 - ▶ BWD is an extremely important parameter for TCP

HOW PROPERTIES OF PHYSICAL LINKS AFFECT NETWORK ARCHITECTURE (5)

- Synchronization is necessary for bit-serial operation
 - ▶ Bit-serial digital signals can be decoded correctly only if the receiver uses a properly synchronized local clock
 - > Synchronous communications: All clocks are hierarchically locked to a master clock (as in SONET)
 - ▶ Asynchronous communications: Clocking information is derived from the data transmitted (as in Ethernet or ATM)
 - ▶ Nearly all digital communication links longer than a few meters use **framed** blocks of bits or bit groups
 - Connection-oriented datalink layer: T-1 frame (24 8-bit samples)
 - Connectionless datalink layer: Ethernet frame

HOW PROPERTIES OF PHYSICAL LINKS AFFECT NETWORK ARCHITECTURE (6)

• Electrical vs. optical channels

- ▶ Electrons interact strongly with one another
 - They are good for switching, but not so good for transmission
 - Examples: The transistor, lossy transmission lines
- > Photons interact very weakly with one another
 - They are good for transmission, but not for switching
 - Transmission example: Optical fiber
 - There's no optical transistor; therefore, most optical switching systems are optoelectronic (electrical control, optical datapath)
 - It's hard to make a fast WDM switch (incoming interface to outgoing interface and λ_1 to λ_2)
 - ♦ This "technical detail" influences the practicality of switched optical networks

SCALE vs. TYPE OF INTERCONNECTION

Interprocessor	Processors are	Interconnection	Examples
distance	located in the same	topology	(non-exclusive)
0.01 m	Die	bit-parallel bus	IC with CPU + FPU
0.1 m	PC board	bit-parallel bus	Processor daughtercard
1 m	System	bit-parallel bus	Multi-headed computer
10 m	Room or small building	bit-serial bus or ring;	
		multiwire bit-group signaling	
100 m	Large building	interconnected buses/rings	LAN
1 km	Small campus	interconnected buses/rings	
10 km	Extended campus	bit-serial bus or point-to-point	VLAN or MAN
100 km	Metropolitan area	bit-serial bus or point-to-point	MAN
1,000 km	State, region or nation	point-to-point	WAN
10,000 km	Continent or planet	point-to-point	The Internet

• LAN = Local Area Network, VLAN = Virtual LAN, MAN = Metropolitan Area Network, WAN = Wide Area Network

ERIK JONSSON SCHOOL PHOTEC

REFERENCES

- 1. Introduction to Communication Systems, Third Edition, by Ferrel G. Stremler (Addison-Wesley, 1990).
- 2. The Electronics of Radio, by David B. Rutledge (Cambridge University Press, 1999).
- 3. Digital Communications: Fundamentals and Applications, by Bernard Sklar (Prentice-Hall, 1988).
- 4. Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing, by Heinrich Mayr, Marc Moeneclaey, and Stefan A. Fechtel (Wiley, 1998).